Accelerator Centres in India

- IUAC New Delhi
- BARC-TIFR Pelletron, Mumbai
- VECC Kolkata

Some experimental setups shown in the next slides

Scattering chamber BARC-TIFR

Scattering chamber BARC-TIFR Inside View

Gamma Detector Array (BARC-TIFR)

XIA System
PXI Digital DAQ at TIFR
24 Clover Detectors

NAND ARRAY AT IUAC

100 neutron detectors TOF path 175 cm

Fission detected in 2 MWPCs

VME Data Aquisition System at NAND

- LAMPS from 2009 to 2019
- 2019 onwards: ROSE-NIAS

INGA Clover Array Setup at VECC

XIA Digital DAQ with INGA at VECC

Inputs to CAMAC or VME DAQ

Amplifier outputs to ADC PMT outputs to QDC Timing outputs (common start/common stop configurations) to TDC Master gate (Trigger) to all modules Gate blocking to all modules (in VME, sometimes in CAMAC)

Inputs to Digital DAQ

Preamplifier outputs only (no amplifiers)
Can be triggerless
Gates can be used

DAQ Systems in India

CAMAC

Controllers: BARC, IUAC, CMC-100, Kinetic

Modules: BARC, IUAC, ORTEC, CAEN, LeCroy, Phillips

CANDLE, FREEDOM at IUAC

LAMPS at BARC-TIFR (in use also at IUAC and VECC)

CAMACDAQ at VECC

VME

VMEDAQ at VECC Kolkata first VME system in India (around 2008) LAMPS_VME at BARC-TIFR and NAND-IUAC (around 2010) ROSE-NIAS at IUAC (2019)

DIGITAL

XIA System at TIFR (around 2010)

CAEN Digital systems:

Tabletop digitisers

VME Module digitizers

CoMPASS: Multiparametric DAQ Software for Physics Applications

Data Acquisition for Physics

Hardware and software to record and process data in experiments

Physics Analysis

Hardare for Analog DAQ

Crate: CAMAC, VME
Multi-crate distributed systems
Modules: ADC, TDC, QDC, Scaler
Controller
Link and PC Interface

CAMAC system The controller is the right most module Addressing scheme is N,A,F 1 μ s/word

VME - Versa Module Euro card 200 ns/word

VME master

power supply

VME slave

ADC, TDC, QDC, Scaler

VME Controller - V2718

- Max throughput rate: 70MB/s
- VME64/VME64X (no 2eSST)
- PCI 32bit, 33MHz
- Optical Link: 1.25 Gb/s
- Max distance: 300m

Operational Aspects

- Controller should be inserted in slot 1 of the VME Crate.
- While setting up the CBLT Chain, the modules forming the chain should be contiguous; last module should be terminated with a 50 Ohm resistance.
- Scalers can be inserted in any empty slot.
- MesyTec ADCs, if used along with CAEN Modules, should be inserted first in the chain.
- Master Gate blocking from busy of modules

New at IUAC (2019): In-house built VME Controller Software system: MARS ROSE-NIAS Available in all the experimental setups Replacing the still available CAMAC setups

DIGITAL DAQ

Digital DAQ systems: XIA: TIFR Mumbai and Kolkata CAEN Digitiser with COMPASS software MESYTEC Digitizer VME Modules

Characteristics of a DAQ

Speed, Dead Time, Throughput Measurement of DAQ speed

- Random events
- Sparsity considerations

Facilities provided in software:

Processing, Remote access, Analysis

Acquisition and Analysis Programs

LAMPS (CAMAC-several versions, VME, Offline)
FREEDOM, CANDLE (CAMAC, Analysis)
CamacDaq, VmeDaq, VECSORT
INGASORT (Analysis)
RADWARE (Analysis)
ROOT (Analysis)
GEANT (Simulation)

Programming

C, C++, Fortran
ROOT: Command line, Macro, C++ programs

Common operations on data

Histograms h1, h2
Gate conditions
Graphical cut (Bgate)
Pseudo parameters
Peak fitting
Re-writing of data